
Side-channel Information Leakage with CPU
Frequency Scaling, but without CPU Frequency

Speaker: Yanpeng Hu

Li Zhu and Chundong Wang

ShanghaiTech University

1

Outline

• Introduction

• Motivation

• Experiments
• Covert channel
• Side-channel

• Mitigations

• Conclusion

2

Introduction

• Modern operating systems dynamically adjust CPU frequency to balance
performance and energy use.

• We observe that I/O performance (e.g., file access on fast storage) is influenced
by runtime CPU frequency changes, reflecting the behavior of the running
workload.

• This effect enables the creation of a covert channel across different physical cores.

• We present IOLeak, a novel side channel that uses I/O latency to infer workload

activity. IOLeak enables stealthy attacks such as:

• Cryptographic key extraction
• Website fingerprinting

3

Outline

• Introduction

• Motivation

• Experiments
• Covert channel
• Side-channel

• Mitigations

• Conclusion

4

Dynamic voltage and frequency scaling

• Dynamic voltage and frequency scaling (DVFS) allows CPUs
to adjust their clock frequency based on workload demands.

• The key idea is that during I/O operations, most of the time is
spent waiting on device-level responses rather than utilizing
the CPU.

• As a result, lowering the CPU frequency during these non-
intensive tasks—such as storage I/O—can reduce energy
usage without noticeably affecting performance.

5

However…

• As device I/Os continue to improve in speed, software
overhead now constitutes a larger portion of total system
latency.

• Consequently, I/O latency has become more sensitive to
changes in CPU frequency.

• To validate this effect, we conducted an experiment.

6

Testbed

Machine CPU Storage Device

M1
12th Gen Intel® CoreTM i5-12500
(6 physical cores)

Intel 660p in NVMe SSD (512GB)

M2
Intel® Xeon® Gold 6348 (28
physical cores)

Samsung PM863a SATA SSD
(960GB)

7

• Kernel: Linux kernel 6.8.0-51

• File system: ext4, default data=ordered mode

An abstraction of I/O stack

8

• We divide each read request into

two stages: CPU1 and IO + CPU2.

• We then perform a breakdown

analysis to examine how CPU

frequency affects I/O latency

across these two stages.

VFS

Block I/O layer

Device

Applications

read requestCPU1

IO+CPU2

Motivation

9

• We make a breakdown analysis on

two machines.

• We fix CPU frequency on 800MHz

and 3GHz to compare a file I/O

latency.

Motivation

10

13.2%

17.2%

• On M1, The execution time for the

CPU1 stage decreases by 73.3%, while

the IO+CPU2 stage time reduces by

7.6%.

• The acceleration of computations

helps explain why changes in CPU

frequency can have such a noticeable

impact on I/O latencies, particularly

when using fast SSDs.

Motivation

11

• We then test I/O latency under default

powersave DVFS policy.

• When the CPU frequency scales up due

to the computing task, the average I/O

latency decreases by 15.2% on M1 and

30.6% on M2.

15.2%

30.6%

Outline

• Introduction

• Motivation

• Experiments
• Covert channel
• Side-channel

• Mitigations

• Conclusion

12

Covert channel

13

Machine

Package

Low-latency storage device

Memory

computations

Logical
core 1

Core 0

Logical
core 2

Logical
core 1

Core 1

Logical
core 2

Logical
core 1

Core n

Logical
core 2…

sender

Read/write

receiver

Covert channel results

14

BER: bit error rate

• Compute-intensive noise: stress-ng

• I/O-intensive noise: fio

• IOLeak achieves a capacity comparable to covert channels built by other researchers

directly using power management (18.7 bps) and CPU frequency (46 bps).

Outline

• Introduction

• Motivation

• Experiments
• Covert channel
• Side-channel

• Mitigations

• Conclusion

15

Side-channel

16

Machine

Package

Low-latency storage device

Memory

computations

attacker

Logical

core 1

Core 0

Logical

core 2

Logical

core 1

Core 1

Logical

core 2

Logical

core 1

Core n

Logical

core 2
…

victim

Read/write

Machine

Package

Low-latency storage device

Memory

attacker

Logical

core 1

Core 0

Logical

core 2

Logical

core 1

Core 1

Logical

core 2

Logical

core 1

Core n

Logical

core 2
…

Read/write

Extracting Cryptographic Keys

• Wang, et al.[1] demonstrated that SIKE is vulnerable under
the chosen-ciphertext attack (CCA) model.

• The server's static secret key is an integer with bit
expansion , where =378. An attacker
who knows the least significant bits of can infer th
bit. They managed to extract secret keys by monitoring
variations in CPU frequency.

• We demonstrate IOLeak can also do secret key extractions.

17

[1] Wang, Yingchen, et al. "Hertzbleed: Turning power Side-Channel attacks into remote

timing attacks on x86." 31st USENIX Security Symposium (USENIX Security 22). 2022.

Extracting Cryptographic Keys

18

We choose two SIKE implementations as our victims: PQCrypto-SIDH and CIRCL.

Fingerprinting Websites

19

• IOLeak successfully distinguishes between visits to different websites

Browser Google Chrome Mozilla Firefox

Metric
Top-1

Accuracy
Top-5

Accuracy
Top-1

Accuracy
Top-5

Accuracy

Machine 1 79.4% 97.5% 65.5% 83.0%

Machine 2 48.2% 76.7% 46.4% 77.0%

• Top-1 accuracy: The model answer (the one with highest probability) must be exactly the expected answer.

• Top-5 accuracy: Any of the model 5 highest probability answers must match the expected answer.

• Dataset: Alexa Top 100.

Outline

• Introduction

• Motivation

• Experiments
• Covert channel
• Side-channel

• Mitigations

• Conclusion

20

Mitigation against IOLeak

• Involve I/O-intensive tasks to defend against IOLeak.

• Fix the CPU frequency to prevent information from being leaked
through CPU frequency scaling.
• This, however, violates the intention of changing CPU frequency to achieve

both power saving and high performance.

• Application-specific mitigation.

21

Outline

• Introduction

• Motivation

• Experiments
• Covert channel
• Side-channel

• Mitigations

• Conclusion

22

Conclusion

• IOLeak is the first timing-based side channel that uses storage I/O
response latency to reflect real-time CPU frequency of a victim
workload.

• The IOLeak covert channel remains effective in various environments
• Idle or low-noise systems.
• Systems under some CPU-intensive workloads.

• IOLeak impacts real-world applications where CPU frequency varies
at runtime.
• Demonstrated capabilities:

• Cryptographic key extraction from SIKE (Supersingular Isogeny Key Encapsulation)

• Website finger-printing.

23

Q&A

• Thank you for your time.

• If you have any questions, please contact:
• Li Zhu: zhuli2023@shanghaitech.edu.cn
• Chundong Wang: cd_wang@outlook.com

24

